On Solving Shortest Paths with a Least-Squares primal-Dual Algorithm

نویسنده

  • I-Lin Wang
چکیده

Recently a new least-squares primal-dual (LSPD) algorithm, that is impervious to degeneracy, has effectively been applied to solving linear programming problems by Barnes et al., 2002. In this paper, we show an application of LSPD to shortest path problems with nonnegative arc length is equivalent to the Dijkstra’s algorithm. We also compare the LSPD algorithm with the conventional primal-dual algorithm in solving shortest path problems and show their difference due to degeneracy in solving the 1-1 shortest path problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Primal Dual Active Set with Continuation Algorithm for the \ell^0-Regularized Optimization Problem

We develop a primal dual active set with continuation algorithm for solving the l-regularized least-squares problem that frequently arises in compressed sensing. The algorithm couples the the primal dual active set method with a continuation strategy on the regularization parameter. At each inner iteration, it first identifies the active set from both primal and dual variables, and then updates...

متن کامل

Preconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear-least squares problems

When solving nonlinear least-squares problems, it is often useful to regularize the problem using a quadratic term, a practice which is especially common in applications arising in inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm is analyzed for such applications, where, contrary to the standard algorithm, the least-squares subproblem solved at each ite...

متن کامل

A Note on the Connection Between the Primal-Dual and the A* Algorithm

The primal-dual algorithm for linear programming is very effective for solving network flow problems. For the method to work, an initial feasible solution to the dual is required. In this article, we show that, for the shortest path problem in a positively weighted graph equipped with a consistent heuristic function, the primal-dual algorithm will become the well-known A* algorithm if a special...

متن کامل

Primal and dual assignment networks

This paper presents two recurrent neural networks for solving the assignment problem. Simplifying the architecture of a recurrent neural network based on the primal assignment problem, the first recurrent neural network, called the primal assignment network, has less complex connectivity than its predecessor. The second recurrent neural network, called the dual assignment network, based on the ...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • APJOR

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2008